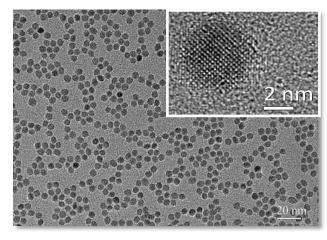


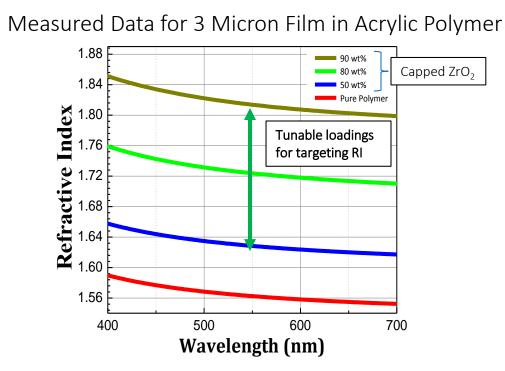
The Clear Solution®

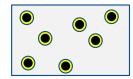

Ink-Jet Printing of High-Index Zirconia Nanocomposite Materials

Dr. Peter Guschl

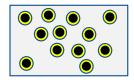
25 May 2017

Technology Leader in High Refractive Index Materials

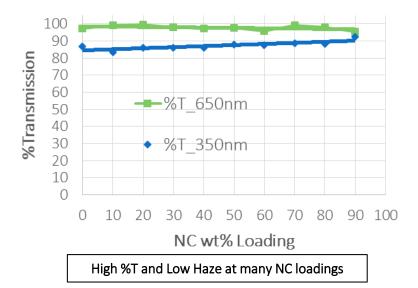

- ZrO₂ Nanocrystal Dispersions
- Best Dispersions Available
 - 5 nm Spheres
 - Fully Uniform
 - High Loadings (> 80wt%)
 - 95% Transmittance
 - High RI > 1.8
 - Broad Compatibility
- Highly Scaled Process (40 MT)
- Strong IP Position 43+ issued and pending patents


kb bidium	Strontium 87.62		Zirconium 91.224	Nh	IVIO Molybdenum 95,94	Technetium (98)
.4678 55	56	- G.	72	- 72 G	74	75
Cs esium	Ba Barium 137.327	Lanthanum :	Hafnium 178.49	Ta Tantalum 180.9479	W Tungsten 183.84	Re Rhenium 186.207
87	88	<u>138.9055</u> 89	104	105	106	107
Fr rancium (223)	Radium (226)	Actinium (227)	Rf Rutherfordium (261)	Dubnium (262)	Sg Seaborgium (263)	Bohrium (262)

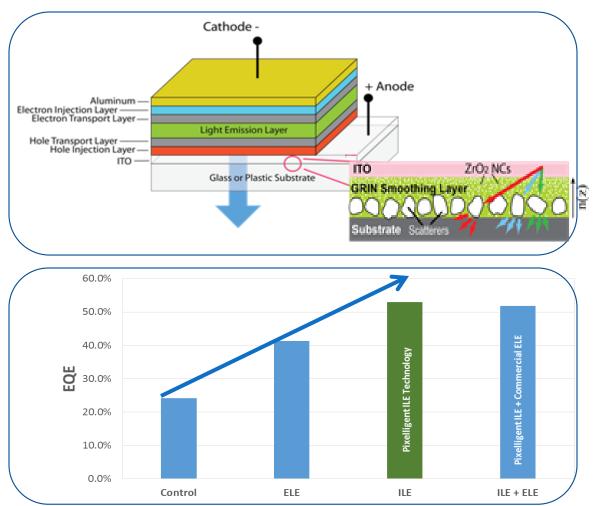
Left: 50 wt% ZrO2 Nanocrystals in Solvent | Right: Pure Solvent

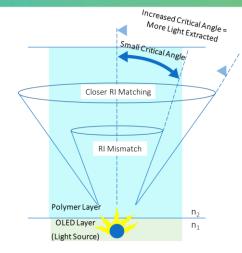

PixClear Nanocomposite Performance

Nanocomposite with Capped ZrO₂ in Polymer Binder



Moderate Loading




High Loading

Loading	k	Haze
90 wt%	<10-3	0.5%
80 wt%	<10-3	0.5%
50 wt%	<10-3	0.5%
0 wt%	<10-3	0.4%

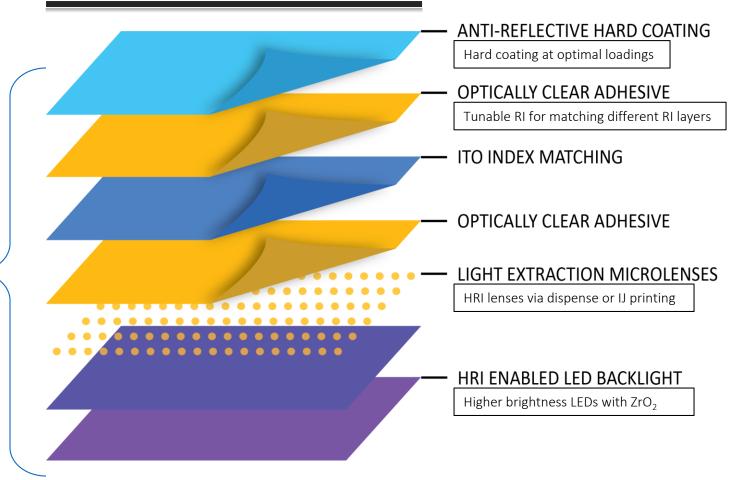
PixClear OLED Lighting Application Doubles External Quantum Efficiency

Two High Refractive Index (HRI) Formulations:

- "HRI Transparent" with 1.78 RI
- "HRI with Scatterers" with 1.78 RI

"HRI Transparent" films provide:

- RI-matching (~1.8) to HRI layers within OLED structures, such as ITO
- Smoothing/planarizing layer

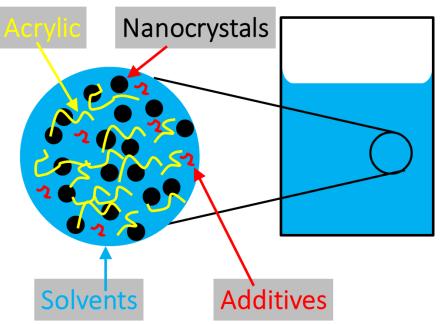

"HRI with Scatterers" films provide:

• Light extraction from HRI layers at flat interfaces

PixClear Display Applications

PixClear Delivers:

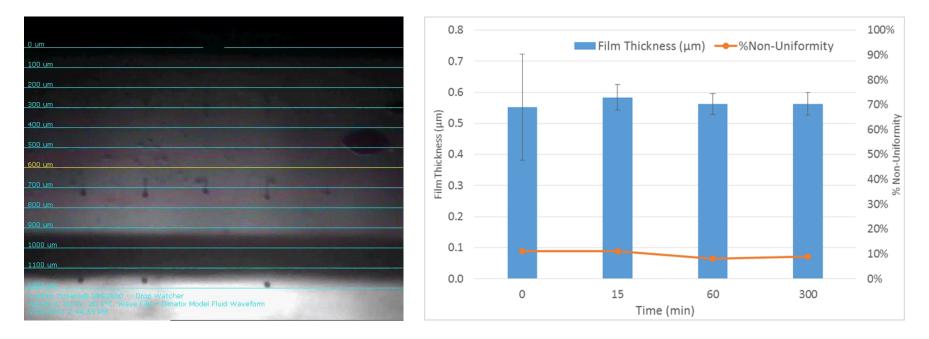
- ✓ 1.75+ RI
- ✓ 95% Transparency
- ✓ Flexible or Rigid
- ✓ 100%+ More Lumens
- ✓ Improved Scratch Resistance



Formulations & Inkjet Printing

- "HRI Transparent" and "HRI with Scatterers" inks were deposited onto glass substrates to form:
 - Uniform film
 - Test patterns for OLED Lighting
- Data shown in presentation for proof-of-concept formulations

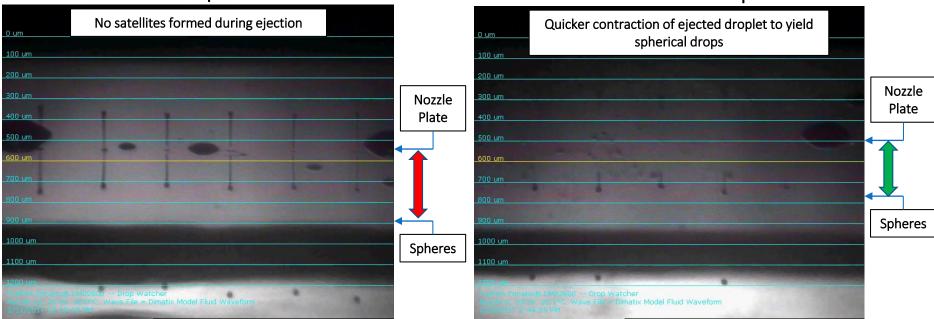
FujiFilm Dimatix DMP 2800



Inkjet Printing

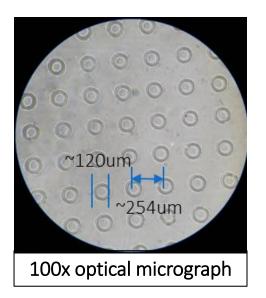
- IJ parameters adjusted to yield uniform films and patterns:
 - Jetting Frequency: 5 10 kHz
 - <u>Applied Voltage</u>: 15 30 V
 - <u>Drop Spacing</u>: 15 25 um
 - <u>Heated Platen</u>: 40 60 C
 - Waveform (right)
 - <u>Slew Rate</u>: 0.30 0.85
 - IJ cartridges (Nominal Drop Volume):
 - 1 pL (9-um nozzle)
 - 10 pL (20-um nozzle)

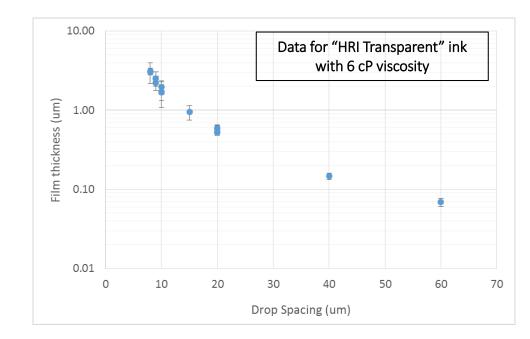
Jettability and Latency of "HRI Transparent" Inks



- "HRI Transparent" ink jetted forms spherical droplets with 1 pL cartridge under 5 kHz drive frequency
- Latency (reliability over time) was shown over a 300-min (5-hour) period at fixed IJ conditions
 - 15 V, 20 um drop spacing, 0.35 slew rate
- Film thickness and %Non-uniformity values were measured for films after each time interval
 - Films were UV-cured after printing

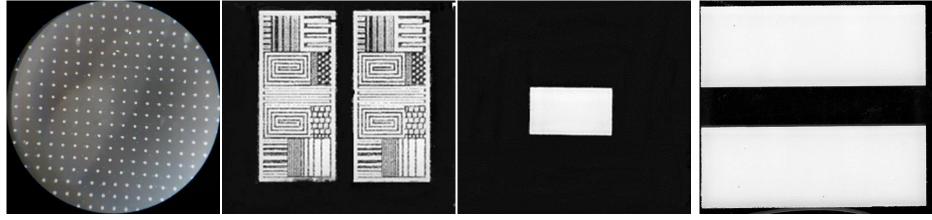
Controlled Jetting at Higher Drive Frequency


"HRI Transparent"


Modified "HRI Transparent"

- ZrO₂ nanocomposite formulations can be easily re-formulated in order to achieve key performance targets
 - Improvements in surface tension, reduced wetting to nozzle plate, viscosity

Thickness Range for "HRI Transparent" Inks



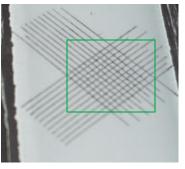
- 120-um diameter droplets have good size uniformity and wetting on glass substrates which allow uniform thin films to be printed
- A wide thickness range between <u>70 nm and 4 um</u> was achieved for blanket films by modifying drop spacing
- 0.5 1.0 um films achieved good uniformity of $\leq 10\%$

The Clear Solution®

:: pixelligent

Patterning "HRI with Scatterers" Ink

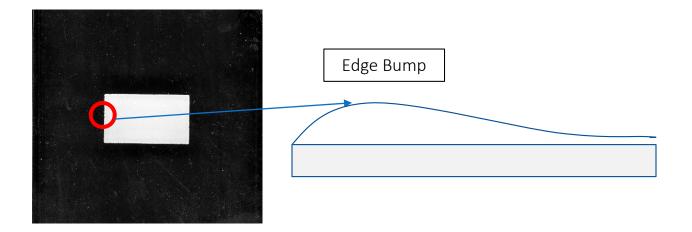
254-um Drop Array


Dimatix Pattern

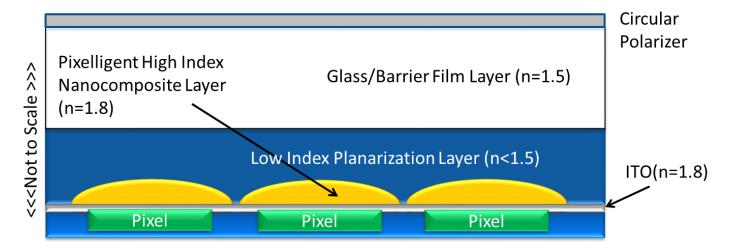
Device Pattern 1

Device Pattern 2

- "HRI with Scatterers" formulation shows good-quality films, demonstrating how it can be IJ-printed to create complex dimensions and patterns
- Excellent film adhesion is also achieved for cured films via the crosshatch tape test


Cut regions maintain film integrity after tape removal

The Clear Solution®


:: pixelligent

Print Quality

- Patterns with a resolution range from 847 1270 dpi (20 30 um drop spacings) have shown a smooth "edge bump" that ranges from 2 – 10 microns higher than the average film thickness
- Decreases in edge bump height can be achieved by increasing viscosity/solids loading and other additives to the formulation
- ITO deposition on top of the ILE layer and over the edge has been proven to be acceptable for OLED <u>lighting</u> device builds
 - ITO coating is continuous and smooth

OLED Lighting \rightarrow OLED Display

- The HRI inks described in this presentation have been shown to improve OLED lighting performance
- Ongoing efforts are investigating similar HRI materials with capped ZrO2 formulations to enhance light extraction of OLED displays
- Under development:
 - Printing of HRI Lens \rightarrow Lens are as small as OLED pixels
 - IJ-printing <u>solvent-free</u> formulations → removing solvent in the inks can prevent shrinkage of lenses and allow "snap-cure" after lens printing

Summary of ZrO₂ Nanocomposites

- Nanocomposite inks with UV-curable acrylics (and other monomers/polymers) and zirconia nanocrystals have good stability in formulation
 - Long pot life
 - Uniform film thickness
- PixClear capped ZrO₂ available with:
 - Different capping chemistries (polar/non-polar + functional/non-functional)
 - Compatibility in multiple solvents
- Films produced from ZrO₂ nanocomposite formulations have:
 - High transparency
 - High RI

Summary of Inkjet Printable Nanocomposites

- "HRI Transparent" and "HRI with Scatterer" inks can be formulated with various additives and solvents to tune surface tension and viscosity that are appropriate for inkjet printing
 - Viscosity tunable to be 2 30 cP
 - Surface tension adjustable to be \geq 30 dyne/cm
 - Solvent additions to improve jetting and reduce nozzle wetting
- Multiple patterns can be printed using HRI inks with and without scatterer particles with good edge fidelity and adhesion to glass
- All of these attributes of our capped ZrO2 inks are ideal for improving light extraction in the OLED lighting and display devices

Acknowledgements

• DOE SBIR Phase I and Phase II Award #DE-SC0011295

• DOE SSL Award #DE-EE0006673

• NIST TIP Award #70NANB10H012

Contact Us

Pixelligent Contact	Role	Email	Phone
Shree Deshpande	VP Business Development	sdeshpande@pixelligent.com	(1) 636-448-9484
Matthew Healy	VP Product Management	mhealy@pixelligent.com	(1) 443-529-8310 x38
Peter Guschl	Applications Engineering Lab Manager	pguschl@pixelligent.com	(1) 443-529-8310 x31

For more technical details, read our white paper: <u>http://www.pixelligent.com/resources/</u>