

High Refractive Index Nanocomposites For Light Extraction In Solid State Lighting Lighting Japan 2015

www.pixelligent.com

Pixelligent Technologies: Company & Technology Overview

 High Refractive Index (R.I.) ZrO2 Enabled Nanocomposites As Internal Light Extraction materials (ILE) for OLED Lighting

High R.I. ZrO2 Enabled Nanocomposites As Encapsulation For LED Lighting

Conclusions

Company Overview

Corporate Highlights

Focus End Markets

- Advanced Materials Company leveraging next-generation nanotechnology
- One Technology, Many Markets
 - All products utilize the same technology, processes, and manufacturing platform
- 5 MT Capacity today, 40 MT 2H, 2015
- Global Customer Base and Presence

LED Chip Encapsulation

OLED Lighting

Optical Components & Films

Displays

Optical Components

Global Capabilities

Baltimore, MD

Headquarters Sales & Distribution Applications Support Manufacturing Baton Rouge, LA

Manufacturing

St. Louis, MO Sales & Distribution Seoul, Korea Sales & Distribution Applications Support **Tokyo, Japan** Sales & Distribution Applications Support

Pixelligent's High R.I. Nano-Dispersions & Nanocomposites Technology

- ZrO2 Nanocrystal Dispersions & Nanocomposites
- Best Dispersions Available
 - Accurate Shape & Size Control (Std. size 5 nm)
 - High Loadings (>80wt%)
 - High Transparency >95%
- Solution Processable Nanocomposites
 - Dispersible in most commonly used solvents & polymers
 - Easy integration into existing manufacturing processes

R.I. of ZrO₂ Nanocomposite 3 Micron Film in Acrylic Polymer

Loading	k (%T)	Haze
90 wt%	<10-3	0.5%
80 wt%	<10 ⁻³	0.5%
50 wt%	<10 ⁻³	0.5%
0 wt%	<10 ⁻³	0.4%

Film thicknesses ranging from 50 nm to >500 microns can be achieved

Manufacturing Process Overview:

40 MT Capacity 2H 2015

Nanocrystal Synthesis: Control Size & Shape

5 nm Zr0₂ nanocrystals produced

Capping Process: Surface Engineering

Application selection stage

Centrifugal Wash & Final Dispersion

Dispersion into target solvent, monomer, or oil

Final Product: Clear Dispersion

Crystal Clear Dispersion even at loading >80% wt.

Highly scalable for mass production

Pixelligent Technology: Summary For Solid State Lighting

Patents and trade secrets cover all aspects of technology

OLED Lighting Internal Light Extraction (ILE)

Pixelligent High R.I. Nanocomposites

OLED Lighting: Many Benefits and Novel Applications

Quality & Experience	Energy Efficiency	Novel Applications

• Diffused, Ultra-Slim, Flexible & Simple

Savings	LED	OLED
Lumens/Watt	~110 -120	~ 60 -75

Color Tunable

Energy efficiency/Light extraction a critical challenge

Source: Acuity Branding

OLED Lighting: Key Challenge For Market Adoption

OLED Lighting Challenge: Low Light Extraction Efficiency

- Lower lifetime
- Higher costs (\$/lumen)

OLED Lighting: Challenges of Light Loss

Only 20 % - 30% Light Is Coupled Out of OLED Lighting Device

Approaches To Enhance Light Extraction In OLED Lighting

Technology	Pros	Cons
External Out-Coupling	Simpler technology to integrate	Only ~20 % of light available for extraction
High R.I. Glass	Easy solution	Very expensive
Brightness Enhancement Film	Established	Expensive
Internal Out-Coupling	Highest impact on extraction efficiency	More complicated to integrate
Nano-imprinted scattering layer	High impact on extraction efficiency	Nano-imprint technology not scalable at this time
High R.I. scattering layer	Highest impact on extraction efficiency	Does not provide smooth surface for ITO deposition on scattering layer and results in loss of yield

Pixelligent Solution

High R.I. Planarizing & Smooth ZrO2 Nanocomposites For ILE

Enhanced Light Extraction with Internal Light Outcoupling

Pixelligent High R.I. ZrO2 Nanocomposites As Smoothing ILE Layer

- Provide high R.I. (>1.8) and high transmittance (>95%)
- Provide highly planarized and smooth surface over scattering structures
- Enable high yield ITO deposition on smooth surface

Pixelligent High R.I. ZrO2 Nanocomposites As OLED ILE

• High R.I. of 1.70 ~ 1.85 Demonstrated

Pixelligent High R.I. ZrO2 Nanocomposites As OLED ILE

>95 % Transmittance Demonstrated

Pixelligent ILE-2 Thermal Stability of R.I.

Pixelligent ILE-2 Thermal Stability of % T

- R.I. and % Transmittance are stable at 200 C Conditions
- Higher temperature stability studies in progress

Pixelligent High R.I. ZrO2 Nanocomposites As OLED ILE

Surface Smoothness Properties of Pix ILE-2

Smooth surface enables high yield ITO coating process and lowers device failures

Enhanced Light Extraction With Pixelligent High R.I. ZrO2 Nanocomposites

Pixelligent ZrO2 Enabled ILE In OLED Device

> 200% Improvement in Light Extraction Improvement in Device with ZrO2 ILE

Summary: Pixelligent High R.I. ZrO2 Nanocomposites For OLED ILE

Performance Criteria	Performance Targets	Pixelligent ILE	
Optical Properties			
Refractive Index	> 1.75 – 1.85@ 550 nm	\checkmark	
% Transmittance	> 90% in visible region	\checkmark	
Physical Properties			
Smoothing Surface	Planarize scattering structures on substrate <1 nm Ra	\checkmark	Sample
Compatible With Current Manufacturing Processes	Spin coating, slot die coating, screen printing, vaccum coating process, etc.	\checkmark	Availat For Tes
Thermal Stability			
150 C – 250 C 30 min	Maintain High R.I. and High % T	\checkmark	
Chemical Properties			
Compatible with polymers	Maintain uniform, transparent planarizing coatings	\checkmark	
Compatible with scatterers	Maintain uniform, transparent planarizing coatings	\checkmark	
Compatible with chemical processing	Stable to ITO patterning processes, acids, bases, solvents, etc.	In progress, initial results promising	

Pixelligent's High R.I. ILE Product Roadmap

LED Lighting Light Extraction with High R.I. Nanocomposites

LED Lumen Losses Due To Refractive Index Mismatch

Challenge:

- Refractive index (R.I.) mismatch between chip (High R.I.), phosphor (High R.I.), and encapsulation materials (Low R.I.) causes total internal reflection at multiple interfaces
- Results in lumen loss and high operating temperature leading to shorter device lifetimes

Solution:

 Increase the R.I. of encapsulating materials (usually silicones) to reduce the mismatch and increase the lumen output

Benefits of High R.I. Encapsulation Materials

Refractive Index (R.I.) vs. Lumen Output

Potential to increase lumen output by 5% - 10% with high R.I. ZrO2-Silicone Nanocomposites

Pixelligent High R.I. ZrO2 Enabled Silicone Nanocomposites For LED

Challenges To Achieve High R.I. ZrO2-Silicone Nanocomposites For LED:

- Silicones are highly viscous materials:
 - Difficult to disperse ZrO2 nanocrystals
- High temperature LED operating conditions:
 - Difficult to achieve stable optical properties
 - Stable lumen gain
 - Mechanical properties

Pixelligent Approach High R.I. ZrO2-Silicone Nanocomposites For LED:

- Surface engineering of ZrO2 to achieve compatibility with silicones
 - Clear, transparent, thermally stable nano-composite films
- Formulation optimization to achieve desired mechanical properties
 - Stable optical properties, stable lumen gain, desired mechanical properties
- Currently engaged with the leading LED package manufacturers and material suppliers

Pixelligent High R.I. ZrO2-Silicone Nanocomposites For LED

Pixelligent ZrO₂ – Silicone Nanocomposite Films With Commercial Di-Methyl Silicone

- R. I. increase from 1.43 to 1.55 at 450nm at 70% wt. loading
- Films stable after 250C/1min solder reflow process
- Stable in 1 week thermal aging at 200 C

Pixelligent High R.I. ZrO2 Enabled-Silicone Nanocomposites For LED

Pixelligent ZrO₂ – Silicone Nanocomposite Films With Commercial Methyl-Phenyl Silicone

- R. I. increase from 1.54 to 1.62 at 450nm at 70% wt. loading
- Films stable after 250C/1min solder reflow process
- Stable in 1 week thermal aging at 200 C

Pixelligent High R.I. ZrO2 Enabled-Silicone Nanocomposites For LED

Pure Methyl Phenyl Silicone vs. Pixelligent ZrO₂ containing Di-Methyl Silicone

- Achieves R.I. of 1.55 equivalent to that of Methyl-Phenyl Silicones
- Maintains the benefits of optical stability of Dimethyl Silicone

Emission Spectral Studies of ZrO2 Nanocomposites Films With Phosphor

Normalized Emission Spectra of Glass Domes Coated with Phosphor + Silicone + Pixelligent ZrO2 with White LEDs

- Pixelligent ZrO₂ does not shift the emission spectrum relative to control
- In some cases required ~ 20% less phosphor to match emission properties of control

Pixelligent High R.I. ZrO2 Enabled-Silicone Nanocomposites For LED

Product Roadmap for LED Silicone Applications

Conclusions:

Pixelligent Value Proposition: OLED Lighting

High R.I. Nanocomposite ILE:

- ✓ High R.I. (>1.75 1.85)
- ✓ High transmittance (> 90%)
- High planarization and smoothness

OLED Lighting Manufacturers:

- ✓ > 200% Improvement in light extraction
- ✓ Significantly improve yields
- ✓ Reduce costs
- ✓ Increase lumens/\$

Pixelligent Value Proposition: LED Lighting

High R.I. Silicone Nanocomposites:

- ✓ High R.I. (up to 1.70)
- ✓ High transmittance (>90%)
- ✓ Good thermal stability (200 C)
- LED Package Manufacturers:
 - ✓ Increase lumen output 2% 10%
 - ✓ Materials usage optimization
 - ✓ Reduced costs
 - ✓ Increase lumens/\$

Thank You!!

Shree Deshpande VP Business Development <u>sdeshpande@pixelligent.com</u> +1-636-448-9484

For Japan Kenji Kakizawa Ito Corporation <u>kakizawa@ito-group.com</u> +81 80 1289 2640 (Lighting Japan Booth: East Hall # 45-36)